Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice.

نویسندگان

  • Chie Ishikawa
  • Tomoko Hatanaka
  • Shuji Misoo
  • Chikahiro Miyake
  • Hiroshi Fukayama
چکیده

Rubisco limits photosynthetic CO(2) fixation because of its low catalytic turnover rate (k(cat)) and competing oxygenase reaction. Previous attempts to improve the catalytic efficiency of Rubisco by genetic engineering have gained little progress. Here we demonstrate that the introduction of the small subunit (RbcS) of high k(cat) Rubisco from the C(4) plant sorghum (Sorghum bicolor) significantly enhances k(cat) of Rubisco in transgenic rice (Oryza sativa). Three independent transgenic lines expressed sorghum RbcS at a high level, accounting for 30%, 44%, and 79% of the total RbcS. Rubisco was likely present as a chimera of sorghum and rice RbcS, and showed 1.32- to 1.50-fold higher k(cat) than in nontransgenic rice. Rubisco from transgenic lines showed a higher K(m) for CO(2) and slightly lower specificity for CO(2) than nontransgenic controls. These results suggest that Rubisco in rice transformed with sorghum RbcS partially acquires the catalytic properties of sorghum Rubisco. Rubisco content in transgenic lines was significantly increased over wild-type levels but Rubisco activation was slightly decreased. The expression of sorghum RbcS did not affect CO(2) assimilation rates under a range of CO(2) partial pressures. The J(max)/V(cmax) ratio was significantly lower in transgenic line compared to the nontransgenic plants. These observations suggest that the capacity of electron transport is not sufficient to support the increased Rubisco capacity in transgenic rice. Although the photosynthetic rate was not enhanced, the strategy presented here opens the way to engineering Rubisco for improvement of photosynthesis and productivity in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of rubisco in rice.

Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closel...

متن کامل

Linked Rubisco subunits can assemble into functional oligomers without impeding catalytic performance.

Although transgenic manipulation in higher plants of the catalytic large subunit (L) of the photosynthetic CO2-fixing enzyme ribulose 1,5-bisphospahte carboxylase/oxygenase (Rubisco) is now possible, the manipulation of its cognate small subunit (S) is frustrated by the nuclear location of its multiple gene copies. To examine whether L and S can be engineered simultaneously by fusing them toget...

متن کامل

Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas.

There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO(2) fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclea...

متن کامل

Catalysis during Tobacco Leaf Development'

Transgenic tobacco (Nicofiana fabacum L. cv W38) plants with an antisense gene directed against the mRNA of ribulose-1,sbiphosphate carboxylase/oxygenase (Rubisco) activase grew more slowly than wild-type plants in a C0,-enriched atmosphere, but eventually attained the same height and number of leaves. Compared with the wild type, the anti-activase plants had reduced CO, assimilation rates, nor...

متن کامل

Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment.

Ribulose-1,5-bisphosphate carboxylase (Rubisco) efficiency for CO2-saturated photosynthesis was examined in leaves of rice (Oryza sativa L.). The amount of Rubisco in a leaf was calculated to be 30-55% in excess for the light-saturated rate of photosynthesis at 100 Pa CO2. Long-term exposure to CO2 enrichment decreased the amount of Rubisco protein. However, N was not reallocated from decreased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 156 3  شماره 

صفحات  -

تاریخ انتشار 2011